A criterion of Petrowsky's kind for a degenerate quasilinear parabolic equation
نویسندگان
چکیده
منابع مشابه
Quenching Profile for a Quasilinear Parabolic Equation
where 00, Z>0, and uq(x) >0, Vx G [—1, Z]. Without loss of generality, we may assume that uq(x) is smooth and bounded above by 1 such that uo(±Z) = 1. Since uo(x) is positive, the local (in time) existence and uniqueness of a classical solution of the problem (1.1)—(1.3) are trivial (see [8]). Many results in quenching, such as single point quenching and profiles, are similar to those b...
متن کاملRational Approximation for a Quasilinear Parabolic Equation
Approximation theorems, analogous to known results for linear elliptic equations, are obtained for solutions of the heat equation. Via the Cole-Hopf transformation, this gives rise to approximation theorems for a nonlinear parabolic equation, Burgers’ equation.
متن کاملAsymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term
This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.
متن کاملA priori estimates for quasilinear degenerate parabolic equations
We prove some maximum and gradient estimates for classical solutions to a wide class of quasilinear degenerate parabolic equations, including first order ones. The proof is elementary and exploits the smallness of the domain in the time direction.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista Matemática Iberoamericana
سال: 1995
ISSN: 0213-2230
DOI: 10.4171/rmi/185